skip to main content


Search for: All records

Creators/Authors contains: "Vaughan, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The combination of gas-phase oxygen abundances and stellar metallicities can provide us with unique insights into the metal enrichment histories of galaxies. In this work, we compare the stellar and gas-phase metallicities measured within a 1Re aperture for a representative sample of 472 star-forming galaxies extracted from the SAMI Galaxy Survey. We confirm that the stellar and interstellar medium (ISM) metallicities are strongly correlated, with scatter ∼3 times smaller than that found in previous works, and that integrated stellar populations are generally more metal-poor than the ISM, especially in low-mass galaxies. The ratio between the two metallicities strongly correlates with several integrated galaxy properties including stellar mass, specific star formation rate, and a gravitational potential proxy. However, we show that these trends are primarily a consequence of: (a) the different star formation and metal enrichment histories of the galaxies, and (b) the fact that while stellar metallicities trace primarily iron enrichment, gas-phase metallicity indicators are calibrated to the enrichment of oxygen in the ISM. Indeed, once both metallicities are converted to the same ‘element base’ all of our trends become significantly weaker. Interestingly, the ratio of gas to stellar metallicity is always below the value expected for a simple closed-box model, which requires that outflows and inflows play an important role in the enrichment history across our entire stellar mass range. This work highlights the complex interplay between stellar and gas-phase metallicities and shows how care must be taken in comparing them to constrain models of galaxy formation and evolution.

     
    more » « less
  2. ABSTRACT We use comparisons between the Sydney-AAO Multi-object Integral Field Spectrograph (SAMI) Galaxy Survey and equilibrium galaxy models to infer the importance of disc fading in the transition of spirals into lenticular (S0) galaxies. The local S0 population has both higher photometric concentration and lower stellar spin than spiral galaxies of comparable mass and we test whether this separation can be accounted for by passive aging alone. We construct a suite of dynamically self-consistent galaxy models, with a bulge, disc, and halo using the galactics code. The dispersion-dominated bulge is given a uniformly old stellar population, while the disc is given a current star formation rate putting it on the main sequence, followed by sudden instantaneous quenching. We then generate mock observables (r-band images, stellar velocity, and dispersion maps) as a function of time since quenching for a range of bulge/total (B/T) mass ratios. The disc fading leads to a decline in measured spin as the bulge contribution becomes more dominant, and also leads to increased concentration. However, the quantitative changes observed after 5 Gyr of disc fading cannot account for all of the observed difference. We see similar results if we instead subdivide our SAMI Galaxy Survey sample by star formation (relative to the main sequence). We use EAGLE simulations to also take into account progenitor bias, using size evolution to infer quenching time. The EAGLE simulations suggest that the progenitors of current passive galaxies typically have slightly higher spin than present day star-forming disc galaxies of the same mass. As a result, progenitor bias moves the data further from the disc fading model scenario, implying that intrinsic dynamical evolution must be important in the transition from star-forming discs to passive discs. 
    more » « less
  3. null (Ed.)
    Abstract We present the results from the first two years of the Planet Hunters TESS citizen science project, which identifies planet candidates in the TESS data by engaging members of the general public. Over 22,000 citizen scientists from around the world visually inspected the first 26 Sectors of TESS data in order to help identify transit-like signals. We use a clustering algorithm to combine these classifications into a ranked list of events for each sector, the top 500 of which are then visually vetted by the science team. We assess the detection efficiency of this methodology by comparing our results to the list of TESS Objects of Interest (TOIs) and show that we recover 85 % of the TOIs with radii greater than 4 ⊕ and 51 % of those with radii between 3 and 4 R⊕. Additionally, we present our 90 most promising planet candidates that had not previously been identified by other teams, 73 of which exhibit only a single transit event in the TESS light curve, and outline our efforts to follow these candidates up using ground-based observatories. Finally, we present noteworthy stellar systems that were identified through the Planet Hunters TESS project. 
    more » « less
  4. null (Ed.)
    ABSTRACT We present results of time-series analysis of the first year of the Fairall 9 intensive disc-reverberation campaign. We used Swift and the Las Cumbres Observatory global telescope network to continuously monitor Fairall 9 from X-rays to near-infrared at a daily to subdaily cadence. The cross-correlation function between bands provides evidence for a lag spectrum consistent with the τ ∝ λ4/3 scaling expected for an optically thick, geometrically thin blackbody accretion disc. Decomposing the flux into constant and variable components, the variable component’s spectral energy distribution is slightly steeper than the standard accretion disc prediction. We find evidence at the Balmer edge in both the lag and flux spectra for an additional bound-free continuum contribution that may arise from reprocessing in the broad-line region. The inferred driving light curve suggests two distinct components, a rapidly variable (<4 d) component arising from X-ray reprocessing, and a more slowly varying (>100 d) component with an opposite lag to the reverberation signal. 
    more » « less
  5. null (Ed.)